npj:半导体杂质水平的机器学习预测— Cd基硫族化物
海归学者发起的公益学术平台
分享信息,整合资源
交流学术,偶尔风月
无缺陷、不含杂质的晶体材料是不存在的。实际上,晶体中的缺陷如同原子的规则排列一样重要,很大程度上决定了晶体的性能。众所周知,对于晶体半导体材料,诸如空位、杂质间隙或替代、表面态和晶界之类的缺陷,影响了晶体的光电性能。在没有外部杂质的情况下,固有缺陷决定了半导体内的平衡费米能级,从而决定了导电性(p型、n型或本征)和电荷载流子的性质。杂质原子的引入可以改变电导率,这也取决于主要的天然缺陷,取决于形成焓与费米能级的关系。预测某些杂质对电子结构和材料导电性的影响,对于抑制或有意将它们掺入半导体晶格以实现理想的光电性能至关重要。但预测半导体中杂质产生的电子能级是一件重要的工作,至今却没有简洁的方法。
Machine-learned impurity level prediction for semiconductors: the example of Cd-based chalcogenides
Arun Mannodi-Kanakkithodi, Michael Y. Toriyama, Fatih G. Sen, Michael J. Davis, Robert F. Klie & Maria K. Y. Chan
The ability to predict the likelihood of impurity incorporation and their electronic energy levels in semiconductors is crucial for controlling its conductivity, and thus the semiconductor’s performance in solar cells, photodiodes, and optoelectronics.The difficulty and expense of experimental and computational determination of impurity levels makes a data-driven machine learning approach appropriate. In this work, we show that a density functional theory-generated dataset of impurities in Cd-based chalcogenides CdTe, CdSe, and CdS can lead to accurate and generalizable predictive models of defect properties.By converting any semiconductor + impurity system into a set of numerical descriptors, regression models are developed for the impurity formation enthalpy and charge transition levels. These regression models can subsequently predict impurity properties in mixed anion CdX compounds (where X is a combination of Te, Se and S) fairly accurately, proving that although trained only on the end points, they are applicable to intermediate compositions. We make machine-learned predictions of the Fermi-level-dependent formation energies of hundreds of possible impurities in 5 chalcogenide compounds, and we suggest a list of impurities which can shift the equilibrium Fermi level in the semiconductor as determined by the dominant intrinsic defects. Machine learning predictions for the dominating impurities compare well with DFT predictions, revealing the power of machine-learned models in the quick screening of impurities likely to affect the optoelectronic behavior of semiconductors.
扩展阅读
本文系网易新闻·网易号“各有态度”特色内容
媒体转载联系授权请看下方